4.7 Article

Three-dimensional model study of the Arctic ozone loss in 2002/2003 and comparison with 1999/2000 and 2003/2004

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 5, 期 -, 页码 139-152

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-5-139-2005

关键词

-

向作者/读者索取更多资源

We have used the SLIMCAT 3-D off-line chemical transport model (CTM) to quantify the Arctic chemical ozone loss in the year 2002/2003 and compare it with similar calculations for the winters 1999/2000 and 2003/2004. Recent changes to the CTM have improved the model's ability to reproduce polar chemical and dynamical processes. The updated CTM uses sigma-theta as a vertical coordinate which allows it to extend down to the surface. The CTM has a detailed stratospheric chemistry scheme and now includes a simple NAT-based denitrification scheme in the stratosphere. In the model runs presented here the model was forced by ECMWF ERA40 and operational analyses. The model used 24 levels extending from the surface to similar to55 km and a horizontal resolution of either 7.5degrees x 7.5degrees or 2.8degrees x 2.8degrees. Two different radiation schemes, MIDRAD and the CCM scheme, were used to diagnose the vertical motion in the stratosphere. Based on tracer observations from balloons and aircraft, the more sophisticated CCM scheme gives a better representation of the vertical transport in this model which includes the troposphere. The higher resolution model generally produces larger chemical O-3 depletion, which agrees better with observations. The CTM results show that very early chemical ozone loss occurred in December 2002 due to extremely low temperatures and early chlorine activation in the lower stratosphere. Thus, chemical loss in this winter started earlier than in the other two winters studied here. In 2002/2003 the local polar ozone loss in the lower stratosphere was similar to40% before the stratospheric final warming. Larger ozone loss occurred in the cold year 1999/2000 which had a persistently cold and stable vortex during most of the winter. For this winter the current model, at a resolution of 2.8degrees x 2.8degrees, can reproduce the observed loss of over 70% locally. In the warm and more disturbed winter 2003/2004 the chemical O3 loss was generally much smaller, except above 620 K where large losses occurred due to a period of very low minimum temperatures at these altitudes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据