4.8 Article

Entanglement assisted metrology

期刊

PHYSICAL REVIEW LETTERS
卷 94, 期 2, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.94.020502

关键词

-

向作者/读者索取更多资源

We propose a new approach to the measurement of a single spin state, based on nuclear magnetic resonance (NMR) techniques and inspired by the coherent control over many-body systems envisaged by quantum information processing. A single target spin is coupled via the magnetic dipolar interaction to a large ensemble of spins. Applying radio frequency pulses, we can control the evolution so that the spin ensemble reaches one of two orthogonal states whose collective properties differ depending on the state of the target spin and are easily measured. We first describe this measurement process using quantum gates; then we show how equivalent schemes can be defined in terms of the Hamiltonian and thus implemented under conditions of real control, using well established NMR techniques. We demonstrate this method with a proof of principle experiment in ensemble liquid state NMR and simulations for small spin systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据