4.7 Article

A femtosecond study of the infrared-driven cis-trans isomerization of nitrous acid (HONO) -: art. no. 044509

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 122, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1834567

关键词

-

向作者/读者索取更多资源

We investigate the dynamics and mechanism of the IR-driven cis-trans isomerization of nitrous acid (HONO) in a low-temperature krypton matrix applying ultrafast time resolved IR spectroscopy. After excitation of the OH-stretching mode the trans HONO state decays biexponentially on a 8 and 260 ps time scale. The initially excited cis HONO state decays on a 20 ps time scale. Cis HONO isomerizes with 10% quantum yield on a 20 ps time scale to trans HONO. The quantum yield we observe is significantly smaller than the previously reported 100%, which could imply that additional, much slower reaction channels exist. We furthermore developed a four-dimensional model of the system, which includes the three proton intramolecular degrees of freedom of HONO fully quantum mechanically and one intermolecular translational degree of freedom of the molecule in the crystal cage. We find that cis-trans isomerization necessarily is accompanied by a translation of the molecule as a whole in the crystal cage. The translational degree of freedom tunes the intramolecular proton states of HONO with respect to each other. When resonances occur, the proton states might couple and transfer population. We suggest a possible reaction pathway, where the cis OH-stretch excited state first couples to a high cis torsional mode, which then may transfer almost instantaneously to the trans side. The model qualitatively explains all experimental observations. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据