4.7 Article

Protein-based thermoplastic elastomers

期刊

MACROMOLECULES
卷 38, 期 2, 页码 345-354

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma0491199

关键词

-

向作者/读者索取更多资源

Investigations of high molecular weight recombinant protein triblock copolymers demonstrate unique opportunities to systematically modify material microstructure on both nano- and mesolength scales in a manner not been previously demonstrated for protein polymer systems. Significantly, through the biosynthesis of BAB-type copolymers containing flanking, plastic-like end blocks and an elastomeric midblock, virtually cross-linked protein-based materials were generated that exhibit tunable properties in a manner completely analogous to synthetic thermoplastic elastomers. Through the rational choice of processing conditions that control meso- and nanoscale structure, changes of greater than 3 orders of magnitude in Young's modulus (0.03-35 MPa) and 5-fold in elongation to break (250-1300%) were observed. Extensibility of this range or magnitude has not been previously reported for virtually cross-linked copolymers that have been produced by either chemical or biosynthetic approaches. We anticipate that these versatile protein-based thermoplastic elastomers will find applications as novel scaffolds for tissue engineering and as new biomaterials for controlled drug release and cell encapsulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据