4.5 Article

Monitoring population dynamics of the thermophilic Bacillus licheniformis CCMI 1034 in batch and continuous cultures using multi-parameter flow cytometry

期刊

JOURNAL OF BIOTECHNOLOGY
卷 115, 期 2, 页码 199-210

出版社

ELSEVIER
DOI: 10.1016/j.jbiotec.2004.08.005

关键词

Bacillus licheniformis; continuous culture; flow cytometry; membranes

向作者/读者索取更多资源

Multi-parameter flow cytometry was used to monitor the population dynamics of Bacillus licheniformis continuous cultivations and the physiological responses to a starvation period and a glucose pulse. Using a mixture of two specific fluorescent stains, DiOC(6)(3) (3,3'-dihexylocarbocyanine iodide), and PI (propidium iodide), flow cytometric analysis revealed cell physiological heterogeneity. Four sub-populations of cells could be easily identified based on their differential fluorescent staining, these correspond to healthy cells (A) stained with DiOC6(3); cells or spores with a depolarised cytoplasmic membrane (B), no staining; cells with a permeabilised depolarised cytoplasmic membrane (C), stained with PI; and permeablised cells with a disrupted cytoplasmic membrane 'ghost cells' (D), stained with both DiOC(6)(3) and PI. Transmission electron micrographs of cells starved of energy showed different cell lysis process stages, highlighting 'ghost cells' which were associated with the double stained sub-population. It was shown, at the individual cell level, that there was a progressive inherent fluctuation in physiological heterogeneity in response to changing environmental conditions. All four sub-populations were shown to be present during glucose-limited continuous cultures, revealing a higher physiological stress level when compared with a glucose pulsed batch. A starvation period (batch without additional nutrients) increased the number of cells in certain sub-populations (cells with depolarised cytoplasmic membranes and cells with permeabilised depolarised cytoplasmic membranes), indicating that such stress may be caused by glucose limitation. Such information could be used to enhance process efficiency. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据