4.7 Article

Remote bathymetry of the littoral zone from AVIRIS, LASH, and QuickBird imagery

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2004.841246

关键词

algorithms; compensation; hydrology; hypercubes; optical image processing; remote sensing; satellite applications; sea coast; spectral analysis; underwater object detection

向作者/读者索取更多资源

An efficient, physics-based remote bathymetry method for the littoral zone is described and illustrated with applications to QuickBird, Littoral Airborne Sensor: Hyperspectral (LASH), and Airborne Visible/Infrared Spectrometer (AVIRIS) spectral imagery. The method combines atmospheric correction, water reflectance spectral simulations, and a linear unmixing bathymetry algorithm that accounts for water surface reflections, thin clouds, and variable bottom brightness, and can incorporate blends of bottom materials. Results include depth maps, bottom color visualizations, and in favorable cases, approximate descriptions of the water composition. In addition, atmospheric correction was advanced through new capabilities added to the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and Moderate Resolution Transmittance (MODTRAN) codes, including characterization of the aerosol wavelength dependence and a discrete-ordinate-method radiative transfer scaling technique for rapid calculation of multiply scattered radiance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据