4.6 Article

Detecting two-party quantum correlations in quantum-key-distribution protocols -: art. no. 022306

期刊

PHYSICAL REVIEW A
卷 71, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.71.022306

关键词

-

向作者/读者索取更多资源

A necessary precondition for secure quantum key distribution is that sender and receiver can prove the presence of entanglement in a quantum state that is effectively distributed between them. In order to deliver this entanglement proof one can use the class of entanglement witness (EW) operators that can be constructed from the available measurements results. This class of EWs can be used to provide a necessary and sufficient condition for the existence of quantum correlations even when a quantum state cannot be completely reconstructed. The set of optimal EWs for two well-known entanglement-based (EB) schemes, the six-state and the four-state EB protocols, has been obtained recently [M. Curty , Phys. Rev. Lett. 92, 217903 (2004).] Here we complete these results, now showing specifically the analysis for the case of prepare and measure (PM) schemes. For this, we investigate the signal states and detection methods of the four-state and the two-state PM schemes. For each of these protocols we obtain a reduced set of EWs. More importantly, each set of EWs can be used to derive a necessary and sufficient condition to prove that quantum correlations are present in these protocols.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据