4.5 Article

A role for caveolin-1 in post-injury reactive neuronal plasticity

期刊

JOURNAL OF NEUROCHEMISTRY
卷 92, 期 4, 页码 831-839

出版社

WILEY
DOI: 10.1111/j.1471-4159.2004.02917.x

关键词

caveolin; lesion; PC12; remodeling; sprouting; synaptogenesis

向作者/读者索取更多资源

Remodeling and plasticity in the adult brain require cholesterol redistribution and synthesis for the formation of new membrane components. Caveolin-1 is a cholesterol-binding membrane protein involved in cellular cholesterol transport and homeostasis. Evidence presented here demonstrates an up-regulation of caveolin-1 in the hippocampus, which was temporally correlated with an increase in synaptophysin during the reinnervation phase in a mouse model of hippocampal deafferentation. Using an in vitro model of neuronal reactive plasticity, we examined the effect of virally mediated overexpression of caveolin-1 on injured differentiated PC12 cells undergoing terminal remodeling. Three days post lesion, caveolin-1-overexpressing cells revealed increases in synaptophysin and GAP-43, two markers of neurite sprouting and synaptogenesis. Morphologically, caveolin-1-overexpressing cells showed a decrease in primary neurite outgrowth and branching as well as an increase in neurite density. Caveolin-1-overexpressing cells also revealed the presence of terminal swelling and beading along processes, consistent with a possible alteration of microtubules stability. Moreover, a focal enrichment of caveolin-1 immunofluorescence was observed at the bases of axonal and dendritic terminals of mouse primary hippocampal neurons. Altogether, these results indicate that caveolin-1 plays an active role in the regulation of injury-induced synaptic and terminal remodeling in the adult CNS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据