4.7 Article

Alteration of the malonyl-CoA/Carnitine palmitoyltransferase I interaction in the β-cell impairs glucose-induced insulin secretion

期刊

DIABETES
卷 54, 期 2, 页码 462-471

出版社

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.54.2.462

关键词

-

向作者/读者索取更多资源

Carnitine palmitoyltransferase 1, which is expressed in the pancreas as the liver isoform (LCPTI), catalyzes the rate-limiting step in the transport of fatty acids into the mitochondria for their oxidation. Malonyl-CoA derived from glucose metabolism regulates fatty acid oxidation by inhibiting LCPTI. To examine directly whether the availability of long-chain fatty acyl-CoA (LC-CoA) affects the regulation of insulin secretion in the R-cell and whether malonyl-CoA may act as a metabolic coupling factor in the beta-cell, we infected INS(832/13) cells and rat islets with an adenovirus encoding a mutant form of LCPTI (Ad-LCPTI M593S) that is insensitive to malonyl-CoA. In Ad-LCPTI M593S-infected INS(832/13) cells, LCPTI activity increased sixfold. This was associated with enhanced fatty acid oxidation, at any glucose concentration, and a 60% suppression of glucose-stimulated insulin secretion (GSIS). In isolated rat islets in which LCPTI M593S was overexpressed, GSIS decreased 40%. The impairment of GSIS in Ad-LCPTI M593S-infected INS(832/13) cells was not recovered when cells were incubated with 0.25 mmol/l palmitate, indicating the deep metabolic influence of a nonregulated fatty acid oxidation system. At high glucose concentration, overexpression of a malonyl-CoA-insensitive form of LCPTI reduced partitioning of exogenous palmitate into lipid esterification products and decreased protein kinase C activation. Moreover, LCPTI M593S expression impaired K-ATP channel-independent GSIS in INS(832/13) cells. The LCPTI M593S mutant caused more pronounced alterations in GSIS and lipid partitioning (fat oxidation, esterification, and the level of nonesterified palmitate) than LCPTI wt in INS(832/13) cells that were transduced with these constructs. The results provide direct support for the hypothesis that the malonyl-CoA/CPTI interaction is a component of a metabolic signaling network that controls insulin secretion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据