4.7 Article

Hindcasting nearshore wind waves using a FEM code for SWAN

期刊

COASTAL ENGINEERING
卷 52, 期 2, 页码 177-195

出版社

ELSEVIER
DOI: 10.1016/j.coastaleng.2004.11.005

关键词

wind waves; SWAN; Finite Element Method; fractional step method; Flux-Corrected Transport algorithm

向作者/读者索取更多资源

An improved SWAN model using the Finite Element Method (FEM) was developed for wind waves simulations in both large-scale oceanic deep water regions and small-scale shallow water regions. The model employs a Taylor-Galerkin finite element technique for the discretization of the modeled area, which makes it flexible to represent bottom topography and irregular boundaries. The fractional step numerical scheme was adopted to split the wave action balance equation into three one-dimensional space equations, which can be solved efficiently by one-dimensional algorithms. The Flux-Corrected Transport method was also applied to circumvent the steep-gradients of the action density in the frequency space. The FEM code with unstructured grids improves the numerical schemes in the original SWAN to maintain computational efficiency at the operational stage. A simulation of wind wave activities for the monsoon and the 2000 Typhoon Bilis were performed using the FEM and SWAN models. The simulated results were compared with field observations in order to verify the suitability of the method. (C) 2004 Elsevier B.V All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据