4.4 Article

Relationship between soot volume fraction and LII signal in AC-LII: effect of primary soot particle diameter polydispersity

期刊

APPLIED PHYSICS B-LASERS AND OPTICS
卷 112, 期 3, 页码 307-319

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00340-012-5330-0

关键词

-

资金

  1. NRCan PERD AFTER Project [C23.006]
  2. NRCan PERD PE Project [C11.008]

向作者/读者索取更多资源

Theoretical analysis and numerical calculations were conducted to investigate the relationship between soot volume fraction and laser-induced incandescence (LII) signal within the context of the auto-compensating LII technique. The emphasis of this study lies in the effect of primary soot particle diameter polydispersity. The LII model was solved for a wide range of primary soot particle diameters from 2 to 80 nm. For a log-normally distributed soot particle ensemble encountered in a typical laminar diffusion flame at atmospheric pressure, the LII signals at 400 and 780 nm were calculated. To quantify the effects of sublimation and differential conduction cooling on the determined soot volume fraction in auto-compensating LII, two new quantities were introduced and demonstrated to be useful in LII study: an emission intensity distribution function and a scaled soot volume fraction. When the laser fluence is sufficiently low to avoid soot mass loss due to sublimation, accurate soot volume fraction can be obtained as long as the LII signals are detected within the first 200 ns after the onset of the laser pulse. When the laser fluence is in the high fluence regime to induce significant sublimation, however, the LII signals should be detected as early as possible even before the laser pulse reaches its peak when the laser fluence is sufficiently high. The analysis method is shown to be useful to provide guidance for soot volume fraction measurements using the auto-compensating LII technique.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据