4.4 Article Proceedings Paper

Trehalose metabolism and glucose sensing in plants

期刊

BIOCHEMICAL SOCIETY TRANSACTIONS
卷 33, 期 -, 页码 276-279

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BST0330276

关键词

abscisic acid; Arabidopsis; carbohydrates; glucose sensing; hexokinase; stress tolerance; trehalose

向作者/读者索取更多资源

Plants sense and respond to changes in carbon and nitrogen metabolites during development and growth according to the internal needs of their metabolism. Sugar-sensing allows plants to switch off photosynthesis when carbohydrates are abundant. These processes involve regulation of gene and protein activity to allow plants the efficient use of energy storage. Besides being a key element in carbon metabolism, glucose (Glc) has unravelled as a primary messenger in signal transduction. it has been proved that hexokinase (HXK) is a Glc sensor. An unusual disaccharide named trehalose is present in very low levels in most plants except for the desiccation-tolerant plants known as 'resurrection' plants where trehalose functions as an osmoprotectant. We have shown that overexpression of the Arabidopsis trehalose-6-phosphate synthase gene (AtTPS1) in Arabidopsis promotes trehalose and trehalose-6-phosphate (T6P) accumulation. Seedlings expressing AtTPS1 displayed a Glc-insensitive phenotype. Transgenic lines germinated normally on Glc, in contrast to wild-type seedlings showing growth retardation and absence of chlorophyll and root elongation. Gene-expression analysis in transgenic plants showed up-regulation of several genes involved in sugar signalling and metabolism. These data suggest that AtTPS1 and accordingly T6P and trehalose play an important role in the regulation of Glc sensing and signalling genes during plant development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据