4.7 Article

Strain softening, yielding, and shear thinning in glassy colloidal suspensions

期刊

PHYSICAL REVIEW E
卷 71, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.71.021401

关键词

-

向作者/读者索取更多资源

A microscopic theory for the dependence on external strain, stress, and shear rate of the transient localization length, elastic modulus, alpha relaxation time, shear viscosity, and other dynamic properties of glassy colloidal suspensions is formulated and numerically applied. The approach is built on entropic barrier hopping as the elementary physical process. The concept of an ideal glass transition plays no role, and dynamical slowing down is a continuous, albeit precipitous, process with increasing colloid volume fraction. The relative roles of mechanically driven motion versus thermally activated barrier hopping and transport have been studied. Various scaling behaviors are found for the relaxation time and shear viscosity in both the controlled stress and shear rate mode of rheological experiments. Apparent power law and/or exponential dependences of the elastic modulus and perturbative and absolute yield stresses on colloid volume fraction are predicted. A nonmonotonic dependence of the absolute yield strain on volume fraction is also found. Qualitative and quantitative comparisons of calculations with experiments on high volume fraction glassy colloidal suspensions show encouraging agreement, and multiple testable predictions are made. The theory is generalizable to treat nonlinear rheological phenomena in other soft glassy complex fluids including depletion gels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据