4.3 Article Proceedings Paper

Monte Carlo radiative transfer modeling of a solar chemical reactor for the co-production of zinc and syngas

出版社

ASME
DOI: 10.1115/1.1824105

关键词

-

向作者/读者索取更多资源

Radiation heat transfer within a solar chemical reactor for the co-production of zinc and syngas is analyzed by the Monte Carlo ray-tracing method. The reactor is treated as a 3D nonisothermal cavity-receiver lined with ZnO particles that are directly exposed to concentrated solar irradiation and undergo endothermic reduction by CH4 at above 1300 K. The analysis includes coupling to conduction/convection heat transfer and chemical kinetics. A calculation of the apparent absorptivity indicates the cavity's approach to a blackbody absorber for either diffuse or specular reflecting inner walls. Numerically calculated temperature distributions, Zinc production rates, and thermal efficiencies are validated with experimental measurements in a solar furnace with a 5-kW prototype reactor. At 1600 K, the zinc production rate reached 0.12 mol/min and the reactor's thermal efficiency exceeded 16%. Scaling up the reactor to power levels of up to 1 MW while keeping constant the relative geometrical dimensions and the solar power flux at 2000 suns results in thermal efficiencies of up to 54%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据