4.3 Article

The Kasumi-1 cell line: a t(8;21)-kit mutant model for acute myeloid leukemia

期刊

LEUKEMIA & LYMPHOMA
卷 46, 期 2, 页码 247-255

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/10428190400007565

关键词

Kasumi-1 cell line; Core Binding Factor Leukemia; t(8;21); c-kit activating mutation; c-kit amplification; KIT mutant-mediated signal transduction; STI 571

向作者/读者索取更多资源

The Kasumi-1 cell line is an intensively investigated model system of Acute Myeloid Leukemia with t(8;21) translocation, that represents 1 of the 2 main subtypes of Core Binding Factor Leukemia (CBFL). Since establishment in 1991 the Kasumi-1 cell line has provided the tool to study the peculiar molecular, morphologic, immunophenotypic findings of AML with t(8;21) and the functional consequences of the AML1-ETO fusion oncogene on myeloid differentiation. Leukemogenesis involves multiple genetic changes and, as suggested by murine experiments and other findings in humans, AML1-ETO expression may not be sufficient for full blown leukemia. In agreement with the two hits'' model of leukemogenesis, based on the cooperation between 1 class of mutations that impair hematopoietic differentiation and a second class of mutations that confer a proliferative and/or survival advantage to hematopoietic progenitors an activating mutation in the tyrosine kinase domain of the c-kit gene was identified in the AML1/ETO expressing Kasumi-1 cell line. The dosage of the Asn822Lys mutated allele was shown to be about 5-fold compared to the normal allele and c-kit amplification was found to map to minute 4cen-q11 marker chromosomes, likely derived from the extra chromosome 4 recorded in the newly established cell line. The combination of t( 8; 21) and trisomy 4 leading to enhanced dosage of a mutated kit allele is a feature of a few CBFL patients reproduced by the Kasumi-1 cell model. The Kasumi-1 cell line, paralleling the commitment stage of CBF leukemia also provides a valuable resource to investigate the effect of tyrosine kinase kit mutant on the main KIT-regulated signal transduction pathways, i.e. MAPK, PI3K/AKT and STAT3 and the diverse inhibitory effect exerted by STI 571 on these KIT mutant activated pathways. PI3K-dependent activation of AKT and STAT activation was observed in Kasumi-1 cells. Contrary to the expectations for an amplified tyrosine kinase kit mutant, we found that STI 571 inhibited KIT Asn822Lys tyrosine phosphorylation and downstream JNK and STAT3 effectors in Kasumi-1 cells, but had no effect on constitutive activation of AKT, suggesting that signaling by tyrosine kinases other than KIT may be responsible for its activation in Kasumi-1 cells. Independent findings on the same model system provide complementary insights into designing strategies for treatment of CBF leukemia associated with mutations in the KIT catalytic domain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据