4.4 Article

Precision measurements in ion traps using slowly moving standing waves

期刊

APPLIED PHYSICS B-LASERS AND OPTICS
卷 107, 期 4, 页码 1061-1067

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00340-011-4740-8

关键词

-

向作者/读者索取更多资源

The present paper describes the experimental implementation of a measuring technique employing a slowly moving, near-resonant, optical standing wave in the context of trapped ions. It is used to measure several figures of merit that are important for quantum computation in ion traps and which are otherwise not easily obtainable. Our technique is shown to offer high precision, and also in many cases uses a much simpler setup than what is normally used. We demonstrate here measurements of (i) the distance between two crystalline ions, in units of the standing wave period, (ii) the Lamb-Dicke parameter, (iii) the temperature of the ion crystal, and (iv) the interferometric stability of a Raman setup. The exact distance between two ions, in units of standing wave periods, is very important for motional entangling gates, and our method offers a practical way of calibrating this distance in the typical laboratory situation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据