4.8 Article

DNA methyltransferase 1 regulates reelin mRNA expression in mouse primary cortical cultures

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0409648102

关键词

epigenetics; gene expression; methylation; schizophrenia

资金

  1. NIMH NIH HHS [R01 MH062188, MH62682, MH062090, R01 MH062682, R01 MH062090, MH062188] Funding Source: Medline

向作者/读者索取更多资源

The polygenic nature of complex psychiatric disorders suggests a common pathway that may be involved in the down-regulation of multiple genes through an epigenetic mechanism. To investigate the role of methylation in down-regulating the expression of mRNAs that may be associated with the schizophrenia phenotype, we have adopted a cell-culture model amenable to this line of investigation. We have administered methionine (2 mM) to primary cultures of cortical neurons prepared from embryonic day 16 mice and show that this treatment down-regulated reelin and glutamic acid decarboxylase 67 (GAD67) mRNA expression but not that corresponding to neuron-specific enolase mRNA. Moreover, methionine increased methylation of the reelin promoter, suggesting a possible mechanism for the observed change. These cultures contain a mixed population of neurons and glia. Approximately 83% of the neurons are GABAergic based on GAD immunoreactivity, and these neurons coexpress high levels of reelin and DNA methyltransferase (Dnmt) 1 immunoreactivity. To examine whether Dnmt1 regulates reelin gene expression, we used an antisense approach to reduce (knock down) Dnmt1 expression. The reduced Dnmt1 mRNA and protein were accompanied by increased reelin mRNA expression. More importantly, the Dnmt1 knockdown blocked the methionine-induced reelin and GAD67 mRNA down-regulation. These data support the hypothesis that the reduced amounts of reelin and GAD67 mRNAs documented in postmortem schizophrenia brain may be the consequence of a Dnmt1-mediated hypermethylation of the corresponding promoters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据