4.7 Article

The birth of a bubble: A molecular simulation study

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 122, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1829040

关键词

-

向作者/读者索取更多资源

We study the nucleation of a bubble in a metastable Lennard-Jones (LJ) fluid, confined to a spherical pore with wetting walls, by a combination of grand canonical, canonical ensemble, and gauge cell Monte Carlo simulation methods complemented by the Voronoi-Delaunay tessellation analysis of statistical geometry of intermolecular cavities. We construct the isotherm of confined fluid in the form of a continuous van der Waals' loop, in which the unstable backward trajectory between the spinodals corresponds to bubble states. We show that as the degree of metastability increases and the fluid becomes progressively stretched, the decrease of fluid density is associated with the evolution of a population of interstitial intermolecular cavities. At the spinodal, the fluid becomes mechanically unstable: Interstitial cavities partly coalesce into a larger cavity located due to the system symmetry around the pore center. This cavity represents a bubble embryo, which grows at the expense of interstitial cavities. The nucleation barrier is calculated by direct thermodynamic integration along the isotherm. We compare our simulation results to the predictions of the classical nucleation theory and experiments on capillary condensation-evaporation of nitrogen in pores of hybrid organic-inorganic mesoporous molecular sieve HMM-3. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据