4.8 Article

Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons

期刊

GASTROENTEROLOGY
卷 128, 期 2, 页码 402-410

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2004.11.062

关键词

-

向作者/读者索取更多资源

Background & Aims: Inhibitory G-protein-coupled receptors have demonstrated potential in treatment of gastroesophageal reflux disease (GERD) through actions on vagal afferent signaling. Metabotropic glutamate receptors (mGluR) belong to this receptor family and have great pharmacologic and molecular diversity, with 8 subtypes. We investigated mGIuR in the vagal system of humans and other species. Methods: Expression of mGluR1-8 in human, dog, ferret, and rodent nodose ganglia was investigated by reverse-transcription polymerase chain reaction. mGluR1-8 immunohistochemistry was performed in combination with retrograde tracing of vagal afferents from ferret proximal stomach to nodose ganglia. Transport of mGluR peripherally was investigated by vagal ligation, followed by immunohistochemistry. Glutamate receptor pharmacology of ferret and rodent gastroesophageal vagal afferents was investigated by testing single fiber responses to graded mechanical stimuli during drug application to their peripheral endings. Results: Messenger RNA for several mGIuR was detected in the nodose ganglia of all species. Retrograde tracing indicated that ferret gastric vagal afferents express mGIuR protein. Accumulation of immunoreactivity proximal to a ligature showed that mGluR were transported peripherally in the vagus nerves. Glutamate (1-30 mumol/L with kynurenate 0.1 mmol/L) concentration dependently inhibited vagal afferent mechanosensitivity. This was mimicked by selective group II and III mGluR agonists but not by a group I agonist. Conversely, a group III mGIuR antagonist increased mechanosensitivity to intense stimuli. Conclusions: Both exogenous and endogenous glutamate inhibits mechanosensitivity of vagal afferents. Group II (mGluR2 and 3) and group III mGluR (mGluR4, 6, 7, 8) are novel targets for inhibition of vagal signaling with therapeutic potential in, for example, GERD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据