4.6 Article

Optical optimization of polyfluorene-fullerene blend photodiodes

期刊

JOURNAL OF APPLIED PHYSICS
卷 97, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1836005

关键词

-

向作者/读者索取更多资源

Blends of polyfluorene-fullerenes are promising materials for polymer-based photovoltaic devices (PPVD). Using spectroscopic ellipsometry we deduce the dielectric function for the blend of the fullerene derivative [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) and the alternating polyfluorene copolymer, poly [2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4('),7(')-di-2-thienyl-2('),1('),3(')-benzothiadiazole)] DiO-PFDTBT (4:1 by weight), for the wavelength interval 250-1300 nm. n reaches above 2 and saturates to 1.9 for high wavelengths. Absorption starts at 720 nm (1.72 eV) and reaches a crest around 550 nm (2.25 eV). The spin coating introduces anisotropy in the blend, manifested in birefringence as well as in dichroism. The dielectric function for the blend versus its constituents is not additive. There are indications that the constituents lost their dielectric identity, as screening cannot explain the experimental data. Simulations of optical absorption inside a PPVD are performed for both monochromatic and polychromatic light, using an air mass 1.5 distributed solar irradiation. The model allows calculation of absorbed energies in absolute values in all layers within the device. An optimization is carried out with respect to the layer thicknesses. From a purely optical perspective there is no gain of optical absorbance in including an additional layer of acceptor. Spatially resolved energy dissipation within the device is presented for polychromatic light. Estimates for quantum efficiencies are derived. Experimental and theoretical results for reflectance are compared. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据