4.7 Article

Tree height influence on ERS interferometric phase in boreal forest

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2004.841250

关键词

atmospheric artifacts; boreal forest; European Remote Sensing (ERS); interferometric water cloud model (IWCM); synthetic aperture radar (SAR) interferometry; tree height

向作者/读者索取更多资源

The European Remote Sensing 1/2 (ERS-1/2) tandem coherence has been shown to provide estimates of stem volume in boreal forest in agreement with in situ data. Tree height estimation from ERS interferometric phase represents a further step in the investigations concerning the retrieval of biophysical parameters using repeat-pass synthetic aperture radar (SAR) interferometry. At two test sites located in Sweden and Finland, sets of respectively nine and eight ERS tandem interferograms were available. Images acquired under stable winter weather conditions and during nighttime were found to be less affected by atmospheric artifacts. Reduction of atmospheric artifacts in interferograms was performed with a phase screen estimated over a dense grid of open areas. Nonetheless, at each test site, only a limited set of pairs was useful for tree height investigations. Under stable winter conditions, the interferometric tree height obtained from an inversion of the differential interferometric phase at stand level was found to be much lower than the true tree height. Spread and uncertainty in the interferometric tree height measurements were caused by phase noise and residual atmospheric artifacts. Using the semiempirical interferometric water cloud model (IWCM), the modeled interferometric tree height was generally in reasonable agreement with the measurements, showing the need of a phase term in interferometric modeling of forests. The inversion of the IWCM for tree height retrieval showed the strong effect of phase noise and atmospheric artifacts on the estimates. Hence, tree height retrieval from ERS repeat-pass SAR interferometry seems to have limited forestry applications. The results also indicate under what conditions the forest influence is small on digital elevation models derived from repeat-pass interferometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据