4.7 Article

Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration

期刊

PLANTA
卷 220, 期 4, 页码 520-530

出版社

SPRINGER
DOI: 10.1007/s00425-004-1364-9

关键词

biopolymer; cell wall; periderm; Solanum; suberin; water transport

向作者/读者索取更多资源

Native and wound periderm was isolated enzymatically from potato ( Solanum tuberosum L. cv. Desiree) tubers at different time intervals between 0 days up to 4 weeks after harvesting. Wound periderm formation was induced by carefully removing native periderm from freshly harvested tubers before storage. The chemical composition of lipids ( waxes) obtained by chloroform extraction, as well as the monomeric composition of native and wound suberin polymer after transesterification by boron trifluoride/ methanol, was analyzed using gas chromatography and mass spectrometry. Both types of periderm contained up to 20% extractable lipids. Besides linear long-chain aliphatic wax compounds, alkyl ferulates were detected as significant constituents. In wound periderm they amounted to more than 60% of the total extracts. Within 1 month of storage, suberin amounts in the polymer increased 2-fold in native periderm ( 180 mug cm(-2)), whereas in wound periderm about 75.0 mug cm(-2) suberin polymer was newly synthesized. Native potato tuber periderm developed a very efficient transport barrier for water with permeances decreasing from 6.4 x 10(-10) m s(-1) to 5.5 x 10(-11) m s(-1) within 1 month of storage. However, the water permeability of wound periderm was on average 100 times higher with permeances decreasing from 4.7 x 10(-8) m s(-1) after 3 days to only 5.4 x 10(-9) m s(-1) after 1 month of storage, although suberin and wax amounts in wound periderm amounted to about 60% of native periderm. From this result it must be concluded that the occurrence of suberin with wax depositions in cell walls does not necessarily allow us to conclude that these cell walls must be nearly perfect barriers to water transport. In addition to the occurrence of the lipophilic biopolymer suberin and associated waxes, the still unknown molecular arrangement and precisely localized deposition of suberin within the cell wall must contribute to the efficiency of suberin as a barrier to water transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据