4.6 Article

Wetting and wetting transitions on copper-based super-hydrophobic surfaces

期刊

LANGMUIR
卷 21, 期 3, 页码 937-943

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la048630s

关键词

-

向作者/读者索取更多资源

Rough and patterned copper surfaces were produced using etching and, separately, using electrodeposition. In both of these approaches the roughness can be varied in a controlled manner and, when hydrophobized, these surfaces show contact angles that increase with increasing roughness to above 160degrees. We show transitions from a Wenzel mode, whereby the liquid follows the contours of the copper surface, to a Cassie-Baxter mode, whereby the liquid bridges between features on the surface. Measured contact angles on etched samples could be modeled quantitatively to within a few degrees by the Wenzel and Cassie-Baxter equations. The contact angle hysteresis on these surfaces initially increased and then decreased as the contact angle increased. The maximum occurred at a surface area where the equilibrium contact angle would suggest that a substantial proportion of the surface area was bridged.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据