4.5 Article

Monitoring the formation of thermal lesions with heat-induced echo-strain imaging: A feasibility study

期刊

ULTRASOUND IN MEDICINE AND BIOLOGY
卷 31, 期 2, 页码 251-259

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ultrasmedbio.2004.11.004

关键词

coagulation; echo shift; echo strain; HIFU; lesion; speed of sound; temperature; thermal expansion; time delay; ultrasound

资金

  1. PHS HHS [P01-64597] Funding Source: Medline

向作者/读者索取更多资源

We investigated the feasibility of using echo-strain images to visualize the extent of high-intensity ultrasound (US)-induced thermal lesions during their formation. Echo-strain, defined as the relative deformation of the backscattered ultrasonic signal, is due to tissue expansion and to changes in the speed of sound during heating. First, a theoretical framework was developed to predict the influence of these effects on the echo signal. Then, a simulation tool was developed to create simulated echo-strain images in thermal lesions. Finally, experimental echo-strain images were acquired in 10 porcine liver samples in vitro for various exposure durations and ultrasonic intensities (resulting in lesions that extended 3 to 8 mm deep from the surface). For this purpose, radiofrequency (RF) frames were acquired at 8 frames per s while heating. For each consecutive pair of RF frames, an echo-strain image was calculated using standard elastographic processing. The echo-strain images were cumulated and displayed. The experimental echo-strain images were compared with gross pathology. The (isoechoic) lesions were visible both in simulated and in experimental cumulated echo-strain images as apparent expansion areas (tensile echo-strain), whereas surrounding tissues exhibited apparent compression. The tensile echo-strain area underestimated the lesion in simulations, but was representative of the lesion in experiments. High correspondence was found between the lesion depth measured from experimental cumulative echo-strain images (y) and from gross pathology (x) (Pearson's correlation = 0.90, linear regression y = x-0.1 mm, residual error = 0 +/- 0.9 mm). We hypothesized that significant tissue expansion made the thermal lesions highly visible in the experimental echo-strain images. In two cases, the ultrasonic intensity was too low to induce a lesion, and the corresponding experimental echo-strain images showed no visible lesion. We conclude that cumulative echo-strain images have the potential to monitor the formation of high-intensity US-induced thermal lesions. (E-mail: Souchon@lyon.inserm.fr) (C) 2005 World Federation for Ultrasound in Medicine Biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据