4.6 Article

Laser-induced synthesis of silver nanoparticles and their conjugation with protein

期刊

出版社

SPRINGER
DOI: 10.1007/s00339-013-8210-5

关键词

-

向作者/读者索取更多资源

Partially oxidized spherical silver nanoparticles (AgNPs) of different size are prepared by pulsed laser ablation in water and directly conjugated to protein S-ovalbumin for the first time and characterized by various optical techniques. UV-Visible spectrum of AgNPs showed localized surface plasmon resonance (LSPR) peak at 396 nm which red shift after protein addition. Further the increased concentration of AgNPs resulted a decrease in intensity and broadening of S-ovalbumin peak (278 nm), which can be related to the formation of protein NPs complex caused by the partial adsorption of S-ovalbumin on the surface of AgNPs. The red shift in LSPR peak of AgNPs after mixing with S-ovalbumin and decrease in protein-characteristic peak with increased silver loading confirmed the formation of protein-AgNPs bioconjugates. The effect of laser fluence on the size of AgNPs and nanoparticle-protein conjugation in the size range 5-38 nm is systematically studied. Raman spectra reveal broken disulphide bonds in the conjugated protein and formation of Ag-S bonds on the nanoparticle surface. Fluorescence spectroscopy showed quenching in fluorescence emission intensity of tryptophan residue of S-ovalbumin due to energy transfer from tryptophan moieties of albumin to AgNPs. Besides this, small blue shift in emission peak is also noticed in presence of AgNPs, which might be due to complex formation between protein and nanoparticles. The binding constant (K) and the number of binding sites (n) between AgNPs and S-ovalbumin have been found to be 0.006 M-1 and 7.11, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据