4.7 Article

Microwave backscatter modeling of Erg surfaces in the Sahara desert

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2004.840646

关键词

backscatter; Erg; ERS Scatterometer (ESCAT); NASA Scatterometer (NSCAT); sand dune; sand sheet; Sea Winds scatterometer (QSCAT); Tropical Rainfall Measuring Mission Precipitation Radar (TRMM-PR)

向作者/读者索取更多资源

The Sahara desert includes large expanses of sand dunes called ergs. These dunes are formed and constantly reshaped by prevailing winds. Previous study shows that Saharan ergs exhibit significant radar backscatter (sigmadegrees) modulation with azimuth angle (phi). We use alphadegrees measurements observed at various incidence angles and phi from the NASA Scatterometer (NSCAT), the SeaWinds scatterometer, the ERS scatterometer (ESCAT), and the Tropical Rainfall Measuring Mission's Precipitation Radar to model the sigmadegrees response from sand dunes. Observations reveal a characteristic relationship between the backscatter modulation and the dune type, i.e., the number and orientation of the dune slopes. Sand dunes are modeled as a composite of tilted rough facets, which are characterized by a probability distribution of tilt with a mean value, and small ripples on the facet surface. The small ripples are modeled as cosinusoidal surface waves that contribute to the return signal at Bragg angles only. Longitudinal and transverse dunes are modeled with rough facets having Gaussian tilt distributions. The model results in a sigmadegrees response similar to NSCAT and ESCAT observations over areas of known dune types in the Sahara. The response is high at look angles equal to the mean tilts of the rough facets and is lower elsewhere. This analysis provides a unique insight into scattering by large-scale sand bedforms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据