4.3 Review

Merging models of hepatitis C virus pathogenesis

期刊

SEMINARS IN LIVER DISEASE
卷 25, 期 1, 页码 84-92

出版社

THIEME MEDICAL PUBL INC
DOI: 10.1055/s-2005-864784

关键词

HCV; fibrosis; cirrhosis; fibrogenesis model; telomere model

向作者/读者索取更多资源

Chronic hepatitis C virus (HCV) infection is one of the major causes for development of liver cirrhosis and end-stage liver disease. This article reviews two contrasting models of HCV pathogenesis, discusses the merits of each, and presents a rationale for combining the two models into one. Any successful model of HCV pathogenesis must explain how the characteristic features of cirrhosis and end-stage liver disease arise. These features include the loss of hepatocyte function (low serum albumin and reduced clotting ability); the presence of regenerative nodules; and the deposition of excessive extracellular matrix material, especially collagen (fibrosis), which is associated with the transformation of the liver sinusoids to capillary-like structures leading to portal hypertension. A successful model should explain several observations about the rate of disease progression. HCV is characterized by slow progression of fibrogenesis and, importantly, cirrhosis seems to develop only after a long latency (and only in a subset of patients). Among the prognostic factors of disease progression, the age at infection with the HCV virus and the presence of fibrosis appear to be highly relevant in predicting the development of progressive fibrosis. Traditional models of HCV pathogenesis propose that fibrogenesis is the predominant process. Fibrogenesis is induced by activation of fibrogenic cells, such as stellate cells, which results in excessive collagen deposition. By altering the normal architecture and vasculature, the collagen bands finally lead to cirrhosis and loss of organ function. Activation of stellate cells is induced by inflammation, cytokine signaling, and possibly by hepatocyte apoptosis. The telomere model of HCV pathogenesis suggests that hepatocyte damage plays an essential role in the development of cirrhosis. According to this model, hepatocyte damage leads to increased cell turnover, and to the accelerated shortening of hepatocyte telomeres. Critical telomere shortening leads to hepatocyte senescence, loss of hepatocyte function, exhaustion of hepatocellular regeneration, and to a greatly enhanced fibrotic response to injury. This review summarizes both models and presents evidence that these models are not mutually exclusive but rather can be merged into a comprehensive pathogenesis model that outlines the pathway of HCV-induced cirrhosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据