4.5 Article

Effects of waveform shape on human sensitivity to electrical stimulation of the inner ear

期刊

HEARING RESEARCH
卷 200, 期 1-2, 页码 73-86

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.heares.2004.08.006

关键词

cochlear implant; behavioural thresholds; symmetric and asymmetric waveforms

向作者/读者索取更多资源

Psychophysical measures of the electrically stimulated human auditory system were obtained for different types of symmetric and asymmetric charge-balanced waveforms. Absolute detection thresholds of biphasic, pseudomonophasic, and 'alternating monophasic' current waveforms delivered by a bipolar intra-cochlear electrode pair were determined for four subjects implanted with the LAURA device. Thresholds for alternating monophasic stimuli, in which anodic and cathodic phases alternated every 5 ms, were 5-8 dB lower than for the biphasic waveforms for all four subjects. For two of the four subjects, thresholds for the pseudomonophasic waveforms were also significantly lower than for the biphasic waveforms. These pseudomonophasic thresholds were greatly affected neither by a 500-mus gap inserted between the two phases, nor by whether the shorter phase preceded or followed the longer one. Loudness balancing measures performed at the most comfortable levels also showed that, for equal loudness, alternating monophasic stimuli required a lower level than biphasic and pseudomonophasic waveforms. For three of the four subjects, the dynamic ranges of the pseudomonophasic (but not alternating monophasic) waveforms were greater than those of the biphasic waveforms. The results demonstrate that thresholds and dynamic ranges of human cochlear implant users can be controlled by manipulating the way in which the charge produced by the initial phase of an electrical pulse is recovered. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据