4.6 Article

Heat shock pretreatment may protect against heatstroke-induced circulatory shock and cerebral ischemia by reducing oxidative stress and energy depletion

期刊

SHOCK
卷 23, 期 2, 页码 161-167

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.shk.0000150779.47107.d5

关键词

heatstroke; heat shock protein 72; striatum; reactive oxygen species; glutathione; ATP

向作者/读者索取更多资源

The mechanisms underlying the protective effects of heat shock pretreatment on heatstroke remain unclear. Here we attempted to ascertain whether the possible occurrence of oxidative stress and energy depletion exhibited during heatstroke can be reduced by heat shock preconditioning. In the present study, colonic temperature, mean arterial pressure, heart rate, striatal levels of heat shock protein 72 (HSP72), local Po-2, brain temperature, cerebral blood flow, cellular ischemia and damage markers, dihydroxybenzoic acid (DHBA), lipid peroxidation, glutathione, glutathione peroxidase and reductase activities, and ATP were assayed in normothermic control rats and in heatstroke rats with or without preconditioning 16 or 96 In before initiation of heatstroke. Heatstroke was induced by exposing the anesthetized rats to a high ambient temperature (Ta = 43degreesC) until the moment at which MAP decreased from its peak level. Sublethal heat shock pretreatment 16 h before initiation of heatstroke, in addition to increasing striatal HSP72 levels, conferred significant protection against heatstroke-induced arterial hypotension, striatal ischemia and damage, increment of hydroxyl radical formation, lipid peroxidation, glutathione oxidation, and decrement of glutathione peroxidase activity and ATP. However, at 96 h after heat shock, when striatal HSP72 expression returned to basal levels, the above responses that occurred during onset of heatstroke were indistinguishable between the two groups. These results suggest that heat shock pretreatment induces HSP72 overexpression in striatum and confers protection against heatstroke-induced striatal ischemia and damage by reducing oxidative stress and energy depletion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据