4.6 Article

Tunable broadband plasmonic perfect absorber at visible frequency

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-012-7344-1

关键词

-

资金

  1. German Research Foundation (DFG) [EL 554/1-1, SFB 677 (C1, C9)]
  2. Helmholtz Association [VH-NG-523]

向作者/读者索取更多资源

Metamaterials and plasmonics as a new pioneering field in photonics joins the features of photonics and electronics by coupling photons to conduction electrons of a metal as surface plasmons (SP). This concept has been implemented for a variety of applications including negative index of refraction, magnetism at visible frequency, cloaking devices amongst others. In the present work, we used plasmonic hybrid material in order to design and fabricate a broad-band perfect plasmonic metamaterial absorber in a stack of metal and Copper-PTFE (Polytetrafluoroethylene) nanocomposite showing an average absorbance of 97.5 % in the whole visible spectrum. Our experimental results showed that the absorption peak of the stacks can be tuned upon varying the thickness and type of the spacer layer due to the sensitivity of plasmon resonance to its environment. To the best of our knowledge, this is the first report of a plasmonic metamaterial absorber based on copper with absorption around 100 % in the entire visible and near-Infrared (NIR).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据