4.8 Article

Soil microbial responses to experimental warming and clipping in a tallgrass prairie

期刊

GLOBAL CHANGE BIOLOGY
卷 11, 期 2, 页码 266-277

出版社

WILEY
DOI: 10.1111/j.1365-2486.2005.00902.x

关键词

bacteria; experimental warming; fungi; microbial activity; microbial biomass; microbial community; soil microbes; tallgrass prairie; temperature acclimatization

向作者/读者索取更多资源

Global surface temperature is predicted to increase by 1.4-5.8degreesC by the end of this century. However, the impacts of this projected warming on soil C balance and the C budget of terrestrial ecosystems are not clear. One major source of uncertainty stems from warming effects on soil microbes, which exert a dominant influence on the net C balance of terrestrial ecosystems by controlling organic matter decomposition and plant nutrient availability. We, therefore, conducted an experiment in a tallgrass prairie ecosystem at the Great Plain Apiaries (near Norman, OK) to study soil microbial responses to temperature elevation of about 2degreesC through artificial heating in clipped and unclipped field plots. While warming did not induce significant changes in net N mineralization, soil microbial biomass and respiration rate, it tended to reduce extractable inorganic N during the second and third warming years, likely through increasing plant uptake. In addition, microbial substrate utilization patterns and the profiles of microbial phospholipid fatty acids (PLFAs) showed that warming caused a shift in the soil microbial community structure in unclipped subplots, leading to the relative dominance of fungi as evidenced by the increased ratio of fungal to bacterial PLFAs. However, no warming effect on soil microbial community structure was found in clipped subplots where a similar scale of temperature increase occurred. Clipping also significantly reduced soil microbial biomass and respiration rate in both warmed and unwarmed plots. These results indicated that warming-led enhancement of plant growth rather than the temperature increase itself may primarily regulate soil microbial response. Our observations show that warming may increase the relative contribution of fungi to the soil microbial community, suggesting that shifts in the microbial community structure may constitute a major mechanism underlying warming acclimatization of soil respiration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据