4.6 Article

Localized insulator-conductor transformation of graphene oxide thin films via focused laser beam irradiation

期刊

出版社

SPRINGER
DOI: 10.1007/s00339-011-6710-8

关键词

-

向作者/读者索取更多资源

By scanning a focused laser beam over graphene oxide (GO) film deposited on SiO2/Si substrates, conductive strips as small as 1 mu m can be patterned directly either as a channel in the insulating matrix, or as a stand-alone micro belt. The conductivity was increased by at least two orders of magnitude with the mobility estimated in the range of 1-10 cm(2)/V s. Raman mapping and X-ray photoelectron spectroscopy studies demonstrated the reduction of GO in the laser-irradiated area. The conductance of the patterned channel was independent of the change in oxide-electrode contact resistance of the graphene, and increased linearly with increasing channel width. Increasing irradiation power by repeated scanning initially increased the conductivity of the irradiated area and saturated at a conductivity of similar to 36 S/cm. Partial oxidative burning combined with photothermal reduction was identified as the underlying mechanism for the enhancement of the conductivity after laser irradiation on the GO film. Oxidative burning can be controlled by varying the film thickness and laser power.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据