4.6 Article

CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 5, 页码 3898-3910

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M409984200

关键词

-

向作者/读者索取更多资源

Spinocerebellar ataxia type 2 (SCA2), one of the hereditary human neurodegenerative disorders, is caused by the expansion of the CAG tandem repeats in the translated sequence of the SCA2 gene. In a normal population the CAG repeat is polymorphic not only in length but also in the number and localization of its CAA interruptions. The aim of this study was to determine the structure of the repeat region in the normal and mutant SCA2 transcripts and to reveal the structural basis of its normal function and dysfunction. We show here that the properties of the CAA interruptions are major determinants of the CAG repeat folding in the normal SCA2 transcripts. We also show that the uninterrupted repeats in mutant transcripts form slippery hairpins, whose length is further reduced by the base pairing of the repeat portion with a specific flanking sequence. The structural organization of the repeat interruption systems present in other human transcripts, such as SCA1, TBP, FOXP2, and MAAM2, are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据