4.7 Article

Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling

期刊

JOURNAL OF EXPERIMENTAL MEDICINE
卷 201, 期 3, 页码 333-339

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20041817

关键词

-

向作者/读者索取更多资源

Endotoxin, a bacterial lipopolysaccharide (LPS), causes fatal septic shock via Toll-like receptor (TLR)4 on effector cells of innate immunity like macrophages, where it activates nuclear factor kappaB (NF-kappaB) and mitogen-activated protein (MAP) kinases to induce proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha. Dok-1 and Dok-2 are adaptor proteins that negatively regulate Ras-Erk signaling downstream of protein tyrosine kinases (PTKs). Here, we demonstrate that LPS rapidly induced the tyrosine phosphorylation and adaptor function of these proteins. The stimulation with LPS of macrophages from mice lacking Dok-1 or Dok-2 induced elevated Erk activation, but not the other MAP kinases or NF-kappaB, resulting in hyperproduction of TNF-alpha and nitric oxide. Furthermore, the mutant mice showed hyperproduction of TNF-alpha and hypersensitivity to LPS. However, macrophages from these mutant mice reacted normally to other pathogenic molecules, CpG oligodeoxynucleotides, poly(I:C) ribonucleotides, or Pam(3)CSK(4) lipopeptide, which activated cognate TLRs but induced no tyrosine phosphorylation of Dok-1 or Dok-2. Forced expression of either adaptor, but not a mutant having a Tyr/Phe substitution, in macrophages inhibited LPS-induced Erk activation and TNF-a production. Thus, Dok-1 and Dok-2 are essential negative regulators downstream of TLR4, implying a novel PTK-dependent pathway in innate immunity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据