4.6 Article

Molecular dynamics simulation of neck growth in laser sintering of different-sized gold nanoparticles under different heating rates

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-011-6680-x

关键词

-

资金

  1. US National Science Foundation [CBET-0730143]

向作者/读者索取更多资源

The neck growth in the laser sintering of different-sized gold (100) nanoparticles under different heating rates is investigated using a molecular dynamics method. The numerical simulations are carried out for four pairs of two spherical nanoparticles under three different heating rates. For each pair, one nanoparticle has the same diameter of 4 nm and the other nanoparticle's diameter is varied, ranging from 4 nm to 20 nm. The results show that the solid state sintering automatically takes place by local potential at room temperature. The stable neck width increases as the size of the other nanoparticle increases. Once the limit stable neck width is reached, it no longer is affected by the nanoparticle size. For the subsequent laser heating to the same final temperature, a lower heating rate results in a larger stable neck width due to the longer sintering process. The neck growth mechanisms and rate under various sintering conditions are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据