4.4 Article

A spider toxin that induces a typical effect of scorpion α-toxins but competes with β-toxins on binding to insect sodium channels

期刊

BIOCHEMISTRY
卷 44, 期 5, 页码 1542-1549

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi048434k

关键词

-

向作者/读者索取更多资源

delta-Palutoxins from the spider Paracoelotes luctuosus (Araneae: Amauroblidae) are 36-37 residue long peptides that show preference for insect sodium channels (NaChs) and modulate their function. Although they slow NaCh inactivation in a fashion similar to that of receptor site 3 modifiers, such as scorpion alpha-toxins, they actually bind with high affinity to the topologically distinct receptor site 4 of scorpion beta-toxins. To resolve this riddle, we scanned by Ala mutagenesis the surface of delta-PaluIT2, a delta-palutoxin variant with the highest affinity for insect NaChs, and compared it to the bioactive surface of a scorpion beta-toxin. We found three regions on the surface of delta-PaluIT2 important for activity: the first consists of Tyr-22 and Tyr-30 (aromatic), Ser-24 and Met-28 (polar), and Arg-8, Arg-26, Arg-32, and Arg-34 (basic) residues; the second is made of Trp-12; and the third is made of Asp-19, whose substitution by Ala uncoupled the binding from toxicity to lepidopteran larvae. Although spider delta-palutoxins and scorpion beta-toxins have developed from different ancestors, they show some commonality in their bioactive surfaces, which may explain their ability to compete for an identical receptor (site 4) on voltage-gated NaChs. Yet, their different mode of channel modulation provides a novel perspective about the structural relatedness of receptor sites 3 and 4, which until now have been considered topologically distinct.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据