4.7 Article

Nitric oxide-directed synaptic remodeling in the adult mammal CNS

期刊

JOURNAL OF NEUROSCIENCE
卷 25, 期 6, 页码 1448-1458

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4600-04.2005

关键词

synaptic plasticity; nitric oxide; cGMP; hypoglossal motoneurons; degenerative processes; regenerative processes

向作者/读者索取更多资源

In adult mammals, learning, memory, and restoration of sensorimotor lost functions imply synaptic reorganization that requires diffusible messengers-mediated communication between presynaptic and postsynaptic structures. A candidate molecule to accomplish this function is the gaseous intercellular messenger nitric oxide (NO), which is involved in synaptogenesis and projection refinement during development; however, the role of NO in synaptic reorganization processes in adulthood remains to be established. In this work, we tested the hypothesis that this free radical is a mediator in the adult mammal CNS synaptic remodeling processes using a model of hypoglossal axonal injury recently developed by us. Axonal injury-induced disconnection of motoneurons from myocytes produces withdrawal of synaptic inputs to motoneurons and concomitant upregulation of the neuronal isoform of NO synthase (NOS-I). After recovery of the neuromuscular function, synaptic coverage is reestablished and NOS-I is downregulated. We also report, by using functional and morphological approaches, that chronic inhibition of the NO/cGMP pathway prevents synaptic withdrawal evoked by axon injury, despite the persistent muscle disconnection. After successful withdrawal of synaptic boutons, inhibition of NO synthesis, but not of cGMP, accelerated the recovery of synaptic coverage, although neuromuscular disconnection was maintained. Furthermore, protein S-nitrosylation was upregulated after nerve injury, and this effect was reversed by NOS-I inhibition. Our results suggest that during synaptic remodeling in the adult CNS, NO acts as a signal for synaptic detachment and inhibits synapse formation by cGMP-dependent and probably S-nitrosylation-mediated mechanisms, respectively. We also suggest a feasible role of NO in neurological disorders coursing with NOS-I upregulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据