4.7 Article

Homogenization of Richards equation in permeability fields with different connectivities

期刊

WATER RESOURCES RESEARCH
卷 41, 期 2, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2004WR003329

关键词

-

向作者/读者索取更多资源

Large-scale modeling of transient flow in the unsaturated zone is important for the estimation of the water budget and solute transport in the vadose zone. Upscaled flow models need to capture the impact of small-scale heterogeneities, which are not resolved by the model, on large-scale flow. We perform upscaling of the Richards equation in heterogeneous porous media with continuous distributions of the soil hydraulic parameters using homogenization theory and stochastic averaging techniques. We restrict the analysis to flow regimes in which the capillary-equilibrium assumption holds on the small scale. In order to account for effects of capillary entry pressure we apply the Brooks-Corey model for the soil retention and relative permeability curves and consider Leverett scaling for the coupling of intrinsic permeability and entry pressure. For this model we derive and analyze the ensemble-averaged parameter functions for the macroscopic flow equations. The effects of a definite entry pressure vanish with increasing variance of the log intrinsic permeability. We compare the statistically averaged parameter functions to numerically calculated effective functions for parameter fields with different connectivity properties. These results illustrate that soils with well-connected coarse materials differ in the relative permeability from those with well-connected fine materials or those without particular connectedness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据