4.5 Article

Quasiparticle interference patterns as a test for the nature of the pseudogap phase in the cuprate superconductors

期刊

INTERNATIONAL JOURNAL OF MODERN PHYSICS B
卷 19, 期 4, 页码 731-761

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0217979205026658

关键词

superconductivity; density of states; Fermi surface; magnetic scattering

向作者/读者索取更多资源

Electrons, when scattered by static random disorder, form standing waves that can be imaged using scanning tunneling microscopy. Such interference patterns, observable by the recently developed technique of Fourier transform scanning tunneling spectroscopy (FT-STS), are shown to carry unique fingerprints characteristic of the electronic order present in a material. We exploit this feature of the FT-STS technique to propose a test for the nature of the enigmatic pseudogap phase in the high-T-c cuprate superconductors. Through their sensitivity to the quasiparticle spectra and coherence factors, the FT-STS patterns, in principle, carry enough information to unambiguously determine the nature of the condensate responsible for the pseudogap phenomenon. In practice, the absence of a detailed understanding of the scattering mechanism, together with the experimental uncertainties, prevent such an unambiguous determination. We argue, however, that the next generation of FT-STS experiments, currently underway, should be able to distinguish between the pseudogap dominated by the remnants of superconducting order from the pseudogap dominated by some competing order in the particle-hole channel. Using general arguments and detailed numerical calculations, we point to certain fundamental differences between the two scenarios and discuss the prospects for future experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据