4.7 Article

Predicting accurate stellar angular diameters by the near-infrared surface brightness technique

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2005.08632.x

关键词

stars : fundamental parameters; Cepheids; infrared : stars

向作者/读者索取更多资源

I report on the capabilities of the near-infrared (near-IR) surface brightness technique to predict reliable stellar angular diameters as accurate as less than or similar to2 per cent using standard broad-band Johnson photometry in the colour range -0.1 less than or equal to (V-K)(O) less than or equal to 3.7 including stars of A, F, G, K spectral type. This empirical approach is fast to apply and leads to estimated photometric diameters in very good agreement with recent high-precision interferometric diameter measurements available for non-variable dwarfs and giants, as well as for Cepheid variables. Then I compare semi-empirical diameters predicted by model-dependent photometric and spectrophotometric (SP) methods with near-IR surface brightness diameters adopted as empirical reference calibrators. The overall agreement between all these methods is within approximately +/- 5 per cent, confirming previous works. However, on the same scale of accuracy, there is also evidence for systematic shifts presumably as a result of an incorrect representation of the stellar effective temperature in the model-dependent results. I also compare measurements of spectroscopic radii with near-IR surface brightness radii of Cepheids with known distances. Spectroscopic radii are found to be affected by a scatter as significant as greater than or similar to 9 per cent, which is at least three times greater than the formal error currently claimed by the spectroscopic technique. In contrast, pulsation radii predicted by the period-radius (PR) relation according to the Cepheid period result are significantly less dispersed, indicating a quite small scatter as a result of the finite width of the Cepheid instability strip, as expected from pulsation theory. The resulting low level of noise strongly confirms our previous claims that the pulsation parallaxes are the most accurate empirical distances presently available for Galactic and extragalactic Cepheids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据