4.8 Article

Unique Fe2P Nanoparticles Enveloped in Sandwich like Graphited Carbon Sheets as Excellent Hydrogen Evolution Reaction Catalyst and Lithium-Ion Battery Anode

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 48, 页码 26684-26690

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b08620

关键词

Fe2P; graphited carbon; envelope; hydrogen evolution reaction; lithium-ion battery

资金

  1. Fundamental Research Funds for the Central Universities [0301005202017]
  2. Thousand Young Talents Program of the Chinese Central Government [0220002102003]
  3. National Natural Science Foundation of China (NSFC) [21373280, 21403019]
  4. Beijing National Laboratory for Molecular Sciences (BNLMS)
  5. Hundred Talents Program at Chongqing University [0903005203205]

向作者/读者索取更多资源

The novel Fe2P nanoparticles encapsulated in sandwichlike graphited carbon envelope nanocomposite (Fe2P/GCS) that can be first applied in hydrogen evolution reaction (HER) as well as lithium-ion batteries (LIBs) has been designed and fabricated. The unique sandwiched Fe2P/GCS is characterized with several prominent merits, including large specific surface area, nanoporous structure, excellent electronic conductivity, enhanced structural integrity and so on. All of these endow the Fe2P/GCS with brilliant electrochemical performance. When used as a HER electrocatalyst in acidic media, the harvested Fe2P/GCS demonstrates low onset overpotential and Tafel slope as well as particularly outstanding durability. Moreover, as an anode material for LIBs, the sandwiched Fe2P/GCS presents high specific capacity and excellent cyclability and rate capability. As a consequence, the acquired Fe2P/GCS is a promising material for energy applications, especially HER and LIBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据