4.4 Article

Effective mechanical properties of layered rough surfaces

期刊

THIN SOLID FILMS
卷 473, 期 2, 页码 278-295

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2004.08.086

关键词

computer simulation; effective hardness; effective elastic modulus; tribology

向作者/读者索取更多资源

In contact mechanics of layered rough surfaces, found in various systems such as magnetic storage devices and micro/nanoelectromechanical systems, it is of interest to calculate effective elastic modulus and hardness so as to obtain contact parameters using simple analyses for homogeneous surfaces. in this study, effective elastic modulus and hardness of layered rough surfaces are defined on the basis of real area of contact. A numerical model developed by the first author to simulate the contact of layered rough surfaces is used to derive these equations. Completely nondimensionalized empirical equations for these effective mechanical properties are presented. Separate equations are developed for the contact of a single conical asperity on a flat surface, a single spherical asperity on a flat surface, and for multiple asperity contact between two rough surfaces. These equations establish the dependence of effective mechanical properties on indentation depth, layer thickness, hardness and elastic modulus ratios of layer and substrate and surface roughness/asperity geometry. Comparisons of values predicted by the equations with experimentally obtained results are presented. Contact stress contours obtained from this model are analyzed to get a better understanding of the mechanics of contact. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据