4.4 Article

Characterization of chemisorbed hyaluronic acid directly immobilized on solid substrates

出版社

WILEY
DOI: 10.1002/jbm.b.30152

关键词

hyaluronic acid; direct immobilization; characterization; chemisorption; substrates

向作者/读者索取更多资源

Hyaluronic acid (HA) has a number of potential biomedical applications in drug delivery and tissue engineering. For these applications, a prerequisite is to understand the characteristic of HA films directly immobilized to solid substrates. Here, we demonstrate that high molecular weight HA can be directly immobilized onto hydrophilic substrates without any chemical manipulation, allowing for the formation of an ultrathin chemisorbed layer. Hyaluronic acid is stabilized on these surfaces through hydrogen bonding between the hydrophilic moieties in HA [such as carboxylic acid (-COOH) or hydroxyl (-OH) groups] with silanol (-SiOH), carboxylic acid or hydroxyl groups on the hydrophilic substrates. Despite the water solubility, the chemisorbed HA layer remained stable on glass or silicon oxide substrates for at least 7 days in phosphate-buffered saline. Furthermore, HA immobilized on silicon and other dioxide surfaces in much higher quantities than other polysaccharides including dextran sulfate, heparin, heparin sulfate, chondroitin sulfate, dermatan sulfate, and alginic acid. This behavior is related to the molecular entanglement and intrinsic stiffness of HA as a result of strong internal and external hydrogen bonding as well as high molecular weight. These results demonstrate that HA can be used to coat surfaces through direct immobilization. (C) 2004 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据