4.8 Article

PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma

期刊

CANCER RESEARCH
卷 65, 期 4, 页码 1406-1413

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-04-3376

关键词

-

类别

资金

  1. NCI NIH HHS [CA-86335, CA-94233, CA-87830] Funding Source: Medline
  2. NINDS NIH HHS [R01 NS053727-03, NS-49300, NS-42934] Funding Source: Medline

向作者/读者索取更多资源

We have previously proposed that intravascular thrombosis and subsequent vasoocclusion contribute to the development of pseudopalisading necrosis, a pathologic hallmark that distinguishes glioblastoma (WHO grade 4) from lower grade astrocytomas. To better understand the potential prothrombotic mechanisms underlying the formation of these structures that drive tumor angiogenesis, we investigated tissue factor (TF), a potent procoagulant protein known to be overexpressed in astrocytomas. We hypothesized that PTEN loss and tumor hypoxia, which characterize glioblastoma but not lower grade astrocytomas, could up-regulate TF expression and cause intravascular thrombotic occlusion. We examined the effect of PTEN restoration and hypoxia on TF expression and plasma coagulation using a human glioma cell line containing an inducible wt-PTEN cDNA. Cell exposure to hypoxia (1% O-2) markedly increased TF expression, whereas restoration of wt-PTEN caused decreased cellular TF. The latter effect was at least partially dependent on PTEN's protein phosphatase activity. Hypoxic cells accelerated plasma clotting in tilt tube assays and this effect was prevented by both inhibitory antibodies to TF and plasma lacking factor VII, implicating TF-dependent mechanisms. To further examine the genetic events leading to TF upregulation during progression of astrocytomas, we investigated its expression in a series of human astrocytes sequentially infected with E6/E7/human telomerase, Ras, and Akt. Cells transformed with Akt showed the greatest incremental increase in hypoxia-induced TF expression and secretion. Together, our results show that PTEN loss and hypoxia up-regulate TF expression and promote plasma clotting by glioma cells, suggesting that these mechanisms may underlie intravascular thrombosis and pseudopalisading necrosis in glioblastoma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据