4.7 Article

The Arabidopsis Mei2 homologue AMLI binds AtRaptorIB, the plant homologue of a major regulator of eukaryotic cell growth

期刊

BMC PLANT BIOLOGY
卷 5, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2229-5-2

关键词

-

向作者/读者索取更多资源

Background: TOR, the target of the antibiotic rapamycin in both yeast and mammalian cells, is a potent cell growth regulator in all eukaryotes. It acts through the phosphorylation of downstream effectors that are recruited to it by the binding partner Raptor. In Arabidopsis, Raptor activity is essential for postembryonic growth. Though comparative studies suggest potential downstream effectors, no Raptor binding partners have been described in plants. Results: AtRaptoriB, a plant Raptor homologue, binds the AMLI ((A) under bar rabidopsis (M) under bar ei2-like 1) protein in a yeast two-hybrid assay. This interaction is mediated by the N-terminal 219 residues of AML1, and marks AML1 as a candidate AtTOR kinase substrate in plants. The AML1 N-terminus additionally carries transcriptional activation domain activity. Plants homozygous for insertion alleles at the AML1 locus, as well as plants homozygous for insertion alleles at all five loci in the AML gene family, bolt earlier than wild-type plants. Conclusion: AML1 interacts with AtRaptorIB, homologue of a protein that recruits substrates for phosphorylation by the major cell-growth regulator TOR. Identification of AML1 as a putative downstream effector of TOR gives valuable insights into the plant-specific mode of action of this critical growth regulator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据