4.7 Article

Solution structure of the complex between CR2 SCR 1-2 and C3d of human complement: An X-ray scattering and sedimentation modelling study

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 346, 期 3, 页码 859-873

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2004.12.006

关键词

X-ray scattering; analytical ultracentrifugation; short consensus/complement; repeat; molecular modelling

资金

  1. NCI NIH HHS [R01 CA536.15] Funding Source: Medline

向作者/读者索取更多资源

Complement receptor type 2 (CR2, CD21) forms a tight complex with C3d, a fragment of C3, the major complement component. Previous crystal structures of the C3d-CR2 SCR 1-2 complex and free CR2 SCR 1-2 showed that the two SCR domains of CR2 form contact with each other in a closed V-shaped structure. SCR 1 and SCR 2 are connected by an unusually long eight-residue linker peptide. Medium-resolution solution structures for CR2 SCR 1-2, C3d, and their complex were determined by X-ray scattering and analytical ultracentrifugation. CR2 SCR 1-2 is monomeric. For CR2 SCR 1-2, its radius of gyration R-G of 2.12(+/-0.05) nm, its maximum length of 10 nm and its sedimentation coefficient s(20,w)(o) of 1.40(+/-0.03) S do not agree with those calculated from the crystal structures, and instead suggest an open structure. Computer modelling of the CR2 SCR1-2 solution structure was based on the structural randomisation of the eight-residue linker peptide joining SCR 1 and SCR 2 to give 9950 trial models. Comparisons with the X-ray scattering curve indicated that the most favoured arrangements for the two SCR domains corresponded to an open V-shaped structure with no contacts between the SCR domains. For C3d, X-ray scattering and sedimentation velocity experiments showed that it exists as a monomer-dimer equilibrium with a dissociation constant of 40 muM. The X-ray scattering curve for monomeric C3d gave an RG value of 1.95 nm, and this together with its s(20,w)(o) value of 3.17 S gave good agreement with the 20 monomeric C3d crystal structure. Modelling of the C3d dimer gave good agreements with its scattering and ultracentrifugation parameters. For the complex, scattering and ultracentrifugation experiments showed that there was no dimerisation, indicating that the C3d dimerisation site was located close to the CR2 SCR 1-2 binding site. The R-G value of 2.44(+/-0.1) run, its length of 9 nm and its s(20,w)(o) value of 3.45( 0.01) S showed that its structure 20 was not much more elongated than that of C3d. Calculations with 9950 models of CR2 SCR 1-2 bound to C3d through SCR 2 showed that SCR 1 formed an open V-shaped structure with SCR 2 and was capable of interacting with the surface of C3d. We conclude that the open V-shaped structures formed by CR2 SCR 1-2, both when free and when bound to C3d, are optimal for the formation of a tight two-domain interaction with its ligand C3d. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据