3.8 Article

Electrochemical impedance behavior of DNA biosensor based on colloidal Ag and bilayer two-dimensional sol-gel as matrices

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jbbm.2004.11.003

关键词

sol-gel; bilayer two-dimensional 3-mercaptopropyltrimethoxysilane; DNA immobilization; colloidal Ag; electrochemical impedance spectroscopy

向作者/读者索取更多资源

A novel method for fabrication of DNA biosensors has been developed by means of self-assembling colloidal Ag (Ag) to a thiol-containing sol-gel network. The thiol groups of 3-mercaptopropyltrimethoxysilane (MPTS) serve as binding sites for the covalent attachment to gold electrode surface. Then the one-dimensional network of silane unites (1dMPTS) was combined together into a two-dimensional sol-gel network (2dMPTS) by dipping into aqueous NaOH. The second silane layer (B2dMPTS) was formed by immersing electrodes back into the MPTS solution overnight, and then the Ag nanoparticles were chemisorbed onto the thiol groups of the second silane layer. Finally, the mercapto oligonucleotide was self-assembled onto the surface via the Ag nanoparticles. The modified process was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). In addition, we utilized the impedance spectroscopy as a platform for DNA sensing assay. The factors influencing the performance of the resulting biosensor were studied in detail. The linear range of the biosensor was from 8.0 x 10(-9) to 1.0 x 10(-6) M with a detection limit of 4.0 x 10(-9) M at 3sigma. In addition, the experiment results indicate that oligonucleotide immobilized on this way exhibits a good sensitivity and selectivity, high stability and a long-term maintenance of bioactivity. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据