4.4 Article

Augmenting basis set for time-dependent density functional theory calculation of excitation energies: Slater-type orbitals for hydrogen to krypton

期刊

MOLECULAR PHYSICS
卷 103, 期 6-8, 页码 749-761

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00268970412331333618

关键词

-

向作者/读者索取更多资源

Attention is given to the dual nature of the time-dependent density functional theory approach for predicting excitation spectra, namely its theoretical basis in dynamic polarizability and its practical implementation in computer programs as a single configuration interaction. A procedure for generating diffuse functions to be added to standard Slater-type orbital basis sets for H to Kr is proposed and tested on ten close-shell molecules. The database for comparing the performance of standard and augmented basis sets consists of the 15 lowest transitions to valence and Rydberg-like states for each of the molecules. The results of this computational study are very encouraging. The addition of new augmenting functions improves the performance of standard basis sets significantly. For example, the new augmented TZP basis set, about the same size as the standard TZ2P set (and considerably smaller than the large QZ4P set), led to an average absolute deviation of 150 predicted excitation energies of only 0.12 eV from those obtained with the very large basis set called QZ3P-3DIFFUSE, compared to 0.83, 0.79, and 0.19 eV, for the standard TZP, TZ2P, and QZ4P sets, respectively. Similar augmenting functions for Gaussian-type orbital basis sets for H to Kr are also suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据