4.7 Article

OCTN3:: A Na+-independent L-carnitine transporter in enterocytes basolateral membrane

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 202, 期 3, 页码 929-935

出版社

WILEY
DOI: 10.1002/jcp.20193

关键词

-

向作者/读者索取更多资源

L-carnitine transport has been measured in enterocytes and basolateral membrane vesicles (BLMV) isolated from chicken intestinal epithelia. In the nominally Na+-free conditions chicken enterocytes take up L-carnitine until the cell to medium L-carnitine ration is 1. This uptake was inhibited by L-carnitine, D-carnitine, gamma-butyrobetaine, acetylcarnitine, tetraethylammonium (TEA), and betaine. L-H-3-carnitine uptake into BLMV showed no overshoot, and it was (i) Na+-independent, (ii) trans-stimulated by intravesicular L-carnitine, and (iii) cis-inhibited by TEA and cold L-carnitine. L-H-3-carnitine efflux from L-H-3-carnitine preloaded enterocytes was also Na+-independent, and trans-stimulated by L-carnitine, D-carnitine, gamma-butyrobetaine, acetylcarnitine, TEA, and betaine. Both, uptake and efflux of L-carnitine were inhibited by verapamil and unaffected by either extracellular pH or palmitoyl-L-carnitine. RT-PCR with specific primers for the mouse OCTN3 transporter revealed the existence of OCTN3 mRNA in mouse intestine, which was confirmed by in situ hybridization studies. Immunohystochemical analysis showed that OCTN3 protein was mainly associated with the basolateral membrane of rat and chicken enterocytes, whereas OCTN2 was detected at the apical membrane. In conclusion, the results demonstrate for the first time that (i) mammalian small intestine expresses OCTN3 mRNA along the villus and (ii) that OCTN3 protein is located in the basolateral membrane. They also suggest that OCTN3 could mediate the passive, Na+ and pH-independent L-carnitine transport activity measured in the three experimental conditions. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据