4.8 Article

Use of nanosized catalysts for transformation of chloro-organic pollutants

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 39, 期 5, 页码 1283-1290

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es0490222

关键词

-

向作者/读者索取更多资源

A new method to transform anthropogenic, chloro-organic compounds (COC) by use of nanosized molecular catalysts immobilized in sol-gel matrixes is presented. COC represent a serious threat to soil and groundwater quality. Metalloporphyrinogens are nanometer sized molecules that are known to catalyze degradation of COC by reduction reactions. In the current study, metalloporphyrinogens were immobilized in sol-gel matrixes with pore throat diameters of nanometers. The catalytic activity of the matrix arrays for anaerobic reduction of tetra chloroethylene (PCE), trichlorciethylene (TCE), and carbon tetrachloride (CT) was examined. Experiments were performed under conditions pertinent to groundwater systems, with titanium I and zero-valent iron as electron donors. All chloroorganic compounds were reduced in the presence of several sol-gel-metalloporphyrinogen hybrids (heterogeneous catalysts). For example, cobalt-5,10,15,20-(4hydroxyphenyl)-21 H,23H-porphine (TF(0H)P-Co) and cyanocobalamin (vitamin 1312) reduced CT concentrations to less than 5% of their initial values in a matter of hours. Cyanocobalamin was found to reduce PCE to trace amounts in less than 48 h and TCE to less than 25% of its initial concentration in 144 h. The reactions were compared to their homogeneous (without sol-gel matrix) analogues. The reduction activity of COC for the homogeneous and heterogeneous systems ranged between similar reactivity in some cases to lower reduction rates for the heterogeneous system. These lower rates are, however, compensated by the ability to encapsulate and reuse the catalyst. Experiments with cyanocobalamin showed that the catalyst could be reused over at least 12 successive cycles of 24 h each.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据